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We consider the problem of a thin liquid layer falling down an inclined plate that
is subjected to non-uniform heating. The plate temperature is assumed to be linearly
distributed and both directions of the temperature gradient with respect to the flow
are investigated. The film flow is not only influenced by gravity and mean surface
tension, but in addition by the thermocapillary force acting along the free surface. The
coupling of thermocapillary instability and surface-wave instabilities is studied for
two-dimensional disturbances. Applying the long-wave theory, a nonlinear evolution
equation is derived. When the plate temperature is decreasing in the downstream
direction, linear stability analysis exhibits a film stabilization, compared to a uniformly
heated film. In contrast, for increasing temperature along the plate, the film becomes
less stable. Numerical solution of the evolution equation indicates the existence of
permanent finite-amplitude waves of different kinds. The shape of the waves depends
mainly on the mean flow and the mean surface tension, but their amplitudes and
phase speeds are influenced by thermocapillarity.

1. Introduction
Liquid films falling down an inclined heated plate occur in many experimental

setups and technological applications. Such films are susceptible to long-wavelength
instabilities. The interfacial waves propagating along the plate show fascinating non-
linear phenomena, such as solitary waves, transverse secondary instabilities, and
complex disordered patterns. The problem of waves in falling films has been a subject
of numerous experimental and theoretical studies (see the review papers by Chang
1994 and Oron, Davis & Bankoff 1997, as well as the book by Alekseenko, Nako-
ryakov & Pokusaev 1994 and the references therein). The earliest studies of isothermal
films are based on linear stability analysis (Benjamin 1957; Yih 1963). These authors
show that the vertical uniform film is always unstable. The instability of thin liquid
films is manifested as gravity-driven surface waves with a wavelength much larger
than the mean thickness of the film. The flat film on an inclined plate is unstable to
long-wave disturbances for Reynolds numbers greater than Rc = (5/2) cot β, where
β is the angle of inclination with the horizontal. Applying the lubrication approxi-
mation to the Navier–Stokes equations, Benney (1996) derived a nonlinear evolution
equation for two-dimensional flows. Such equations are much simpler than the full
dynamic equations and are often used to study the nonlinear behaviour of film flows.
A weakly nonlinear analysis based on Benney-type equations exhibits a bifurcation
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of the solution giving rise to supercritical or subcritical instabilities of the waves
(Gjevik 1970; Lin 1974). Supercritical finite-amplitude permanent waves exist for
wavenumbers just below the critical wavenumber of the linear instability. A more
complete nonlinear stability analysis for two-dimensional flows has been proposed by
Pumir, Manneville & Pomeau (1983), confirming the results of the weakly nonlinear
theory. They predict the existence of solitary waves for wavenumbers much smaller
than the cut-off wavenumber. Numerical calculations based on the long-wave approx-
imation provide limiting values of the Reynolds number, beyond which there are no
stationary travelling waves and solutions of the evolution equation blow up for finite
time.

The boundary layer approach is commonly used to study the nonlinear behaviour
of falling films at high Reynolds number (Shkadov 1967; Demekhin & Shkadov 1985;
Alekseenko, Nakoryakov & Pokusaev 1985; Trifonov & Tsvelodub 1991; Prokopiou,
Cheng & Chang 1991; Chang, Demekhin & Kopelevich 1993). Salamon, Armstrong
& Brown (1994) and Ramaswamy, Chippada & Joo (1996) studied two-dimensional
surface wave instabilities by direct numerical simulation of the full nonlinear system of
equations. They observe no tendency to wave breaking. They also confirm the results
of the long-wave theory for small-amplitude waves. Recent experiments performed
by Liu, Paul & Gollub (1993) and Liu, Schneider & Gollub (1995) exhibit a good
agreement with the linear stability analysis on the value of the critical Reynolds
number, growth rates and wave velocities.

Falling films on a heated plate are not only susceptible to surface wave instabil-
ities but also to instabilities driven by shear stresses arising from the temperature
dependence of the surface tension (the so-called Marangoni effect). The Marangoni
effect in non-isothermal falling films was first examined by Lin (1975), Sreenivasan
& Lin (1978), and later by Kelly, Davis & Goussis (1986) and Joo, Davis & Bankoff
(1991). These authors consider a thin liquid layer flowing down an inclined, uniformly
heated plate and examine the interaction of the two modes of instability. Applying
the long-wavelength approximation, Kelly et al. (1986) examine the linear instability
problem of films on weakly inclined plates. They establish that thermocapillarity
has a destabilizing effect on the flow. Further, Goussis & Kelly (1990, 1991) ex-
tend their analysis and identify the surface-wave instability as well as two types of
thermocapillary instability.

Treating the same problem, Joo et al. (1991) study the influence of evaporation
on the long-wave instabilities. They apply the nonlinear stability theory and obtain
similar results. In particular, they find that when the slope increases, the effect of
the mean flow becomes more significant and the thermocapillary force amplifies the
disturbances. The wave steeping and the surface fingering tend to develop at earlier
times. It is also shown that when the thermocapillary effect is dominant, equilibration
of the secondary flow is not observed. Spontaneous ruptures of the film surface are
also predicted. However, in the relevant evolution equation, the terms depending on
the Marangoni number are of second order in comparison with those due to gravity
and mean flow.

The direct numerical simulations of the nonlinear non-isothermal problem of
instability in a horizontal layer, made by Krishnamoorthy, Ramaswamy & Joo
(1995), also show the occurrence of ruptures. For films of small thickness and at
moderate heating, Joo, Davis & Bankoff (1996) analyse the nonlinear interaction
between surface-wave and thermocapillary instabilities as well as the formation of
longitudinal rolls. So far, there are not sufficient experimental results for a detailed
comparison with the available theoretical results to be made.
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Among the different physical situations mentioned above, thin falling films on a
vertical or inclined non-uniformly heated plate, have not been examined theoretically.
Thermocapillary instabilities have been studied in horizontal layers (Smith & Davis
1983; Davis 1987) where the imposed temperature gradient has a component parallel
to the free surface so that fluid motion is generated by the tangential stresses, due
to thermocapillarity. Smith & Davis (1983) determine neutral stability curves that
exhibit a two-branch structure. One branch moves away from zero wavenumber for
large values of the Marangoni number. This mode is a temperature disturbance
that propagates in a direction depending on the magnitude of the Prandtl number.
The second instability mode is of gravitational origin and is caused by the surface
deformation.

Recently Kabov, Marchuk & Chupin (1996), Kabov (1998), Kabov et al. (1999) and
Scheid et al. (2000) reported experiments on films falling down a vertical, locally heated
wall. A constant heat flux was imposed on a rectangular area of the wall. In the last of
these experiments the horizontal size of the rectangle is taken to be much larger than
the vertical one, to ensure the presence of two-dimensional flows. Indeed, at small flow
rates and heat fluxes, almost two-dimensional structures are observed in the middle
region of the heated area. In particular, a stationary bump in the free surface appears
close to the upper side of the rectangle. Such a strong surface deformation is due
to the thermocapillary force acting along the interface in a direction opposed to the
gravity force. Direct measurements of the surface temperature confirm this conclusion,
because the temperature first increases significantly to reach a maximum and then
decreases monotonically in the downstream direction. Above some critical value of
the heat flux (depending on the flow rate), regular three-dimensional patterns are
also observed. There exist several vertical ‘horse-shoe’-like structures whose number
depends on the magnitude of the heat flux through the wall. So far, there exists no
theoretical model that describes these features of the film flow on a locally heated
wall. It is worth noting that the distribution of the interface temperature can be
represented locally by a linear function of the longitudinal coordinate, especially in
the region below the bump where it decays monotonically.

The aim of the present study is to examine the nonlinear dynamic behaviour of
a falling liquid film on an inclined plate with a temperature field that increases or
decreases linearly in the downstream direction. The constant temperature gradient
imposed along the plate affects the basic flat-film state as well as the surface-wave
instabilities induced by gravity. We consider small flow rates and moderate temper-
ature gradients for which the thermocapillary force is important and comparable to
the gravity one. The linear stability analysis of a thin liquid layer on a non-uniformly
heated plate recently performed by Kalitzova-Kurteva, Slavtchev & Kurtev (2000) in
the case of infinitesimal wavenumbers, exhibits the role of Marangoni effect on the
magnitude of the critical Reynolds number. Here we extend their study to the finite-
amplitude long-wave instabilities of two-dimensional films. A nonlinear evolution
equation is derived from the governing equations of mass, momentum and energy.
It is solved analytically and numerically for reasonable values of the characteristic
parameters.

The paper is organized as follows. In § 2, we present the physical model for the
film flow and the heat transfer. In § 3, a linear stability analysis is developed and
a numerical method for solving the basic evolution for the film thickness is briefly
discussed. Numerical results describing the nonlinear effects are presented in § 4. In
§ 5, a linear stability analysis for three-dimensional disturbances is proposed and the
main results are summarized.
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Figure 1. Sketch of an inclined falling film.

2. Formulation of the physical model
The physical system under consideration, shown in figure 1, consists of a thin liquid

film which is draining down a rigid plate inclined at angle β with the horizontal.
A constant temperature gradient A is imposed along the plate. Both positive and
negative values of A are considered. The film is bounded above by a motionless gas
at ambient temperature Tg and pressure pg . The free surface is assumed adiabatic.
The liquid is Newtonian with constant density ρ, kinematic viscosity ν and thermal
diffusivity χ. The surface tension σ depends linearly on temperature T :

σ = σ0 − γ(T − Tg), (2.1)

where σ0 is the mean surface tension at temperature Tg and γ = −dσ/dT is a positive
constant for most common liquids.

To formulate the two-dimensional hydrodynamic and thermal problem, Cartesian
coordinates x, z are chosen with x as the streamwise coordinate and z being measured
normal to the plate. The origin is located on the plate surface, where the temperature
is equal to Tg . The wall temperature is given by

Tw = Tg + Ax (2.2)

and increases (decreases) in the streamwise direction with positive (negative) A.
We assume that the liquid film is very thin, the heat flux weak, and the induced

gravity-driven flow is relatively slow, so that the flow regime is close to that predicted
by the lubrication theory. It means that the velocity and temperature vary slowly
along the plate and the length of the surface waves is much larger than the mean film
thickness (denoted by d0).

The dynamical behaviour and heat transfer in the film are determined by four time
scales: the viscous time tvisc = d2

0/ν, the gravitational time tgrav = (d0/g)1/2, the mean
surface tension time tsurf = (ρd2

0/σ0)
1/2, and the thermal diffusion time ttherm = d2

0/χ,
where g is the gravitational acceleration. These characteristic times are not all of the
same order. For very thin films the main characteristic time is the viscous one. The
thermal diffusion time is given by ttherm ≈ tvisc for liquids with the Prandtl number
P = ν/χ = O(1). We also assume that tgrav ≈ tvisc, which means that the Galileo
number G ≡ t2visc/t

2
grav = gd3

0/ν
2 representing the ratio of the gravity force ρg to the

viscous force µν/d3
0, is of order of unity (µ is the dynamic viscosity). The characteristic

time related to the mean surface tension is usually much smaller than the viscous
time and the surface parameter SM ≡ t2visc/t2surf = σ0d0/ρν

2, representing for the ratio
of the capillary force, σ0/d0, to the viscous one, is quite large.
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In thin films the coordinate z and the interface position, z = h(x, t), are scaled by
the mean thickness of the film, while the longitudinal coordinate x is measured by a
length, l, proportional to the disturbance wavelength. As we consider long-wavelength
instabilities, the quantity l is much larger than d0, i.e. the ratio ε ≡ d0/l is a small
parameter. We choose the scales ld0/ν, ν/d0, ν/l and ρν2/d2

0, for the time, t, the
streamwise velocity, u, the transverse velocity w, and the pressure difference, p − pg ,
respectively. The same scales are used for isothermal thin falling films as well as
non-isothermal ones on a uniformly heated wall. In contrast to previous studies, the
temperature difference T − Tg is here scaled by the quantity Al which measures the
temperature difference along the plate between two points distant from each other by
a wavelength.

The governing equations are the equations of continuity, momentum and energy
written in dimensionless form:

ux + wz = 0, (2.3)

ε[ut + uux + wuz] = −εpx + ε2 uxx + uzz + R, (2.4)

ε2[wt + uwx + wwz] = −pz + ε2wxx + εwzz − R cot β, (2.5)

εP [θt + uθx + w θz] = ε2θxx + θzz, (2.6)

where the notation for the dimensional and dimensionless variables is kept the same,
except that the dimensionless temperature is denoted by θ, R = G sin β is taken as the
Reynolds number. The subscripts denote differentiation with respect to the indicated
variable. The variation of the density with temperature is negligible in very thin layers.

The corresponding boundary conditions are the following. At the rigid plate (z = 0)

u = w = 0, (2.7)

with a temperature distribution given by

θ = x. (2.8)

The normal and tangential stress balances at the interface, z = h(x, t), are written as

p+ 2ε
(1− ε2h2

x)

(1 + ε2h2
x)
ux +

2εhx
(1 + ε2h2

x)
(uz + ε2wx) = −ε2SM (1− Caθ) hxx

(1 + ε2h2
x)

3/2
, (2.9)

(1− ε2h2
x)

(1 + ε2h2
x)

1/2
(uz + ε2wx)− 4ε2hx

(1 + ε2h2
x)

1/2
ux = −εMa

P
(θx + hxθz). (2.10)

The last boundary condition for the velocity at the interface is the kinematic
condition

w = ht + uhx. (2.11)

The free surface is considered to be thermally insulated, i.e.

−ε2 hxθx + θz = 0. (2.12)

The non-dimensional parameters appearing in (2.9) and (2.10) are the Marangoni and
capillary numbers defined respectively by

Ma =
γAld0

µχ
, Ca =

γAl

σ0

. (2.13)

The Marangoni and capillary numbers take positive or negative values depending
on the direction of the temperature gradient. According to the experiments of Kabov
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(1998) on films of aqueous solutions of ethyl alcohol, we estimate that |Ma| = O(ε−1),
SM = O(ε−2) and |Ca| = O(ε) for a mean thickness d0 = 10−4 m and |A| = 1 K cm−1.
Let us also introduce the new parameters Mn = εMa/P and S = ε2SM , which are of
the order of unity, and substitute them into (2.9) and (2.10). At the zero approximation
with respect to ε, the thermocapillary force represented by the right-hand side of (2.10)
is comparable with the viscous stresses. Moreover, for R ∼ O(1), P ∼ O(1), S ∼ O(1)
and |Mn| ∼ O(1), the gravity, viscous, capillary and thermocapillary forces are of the
same order and their effect occurs simultaneously at the zero-order approximation.

3. Long-wave approximation
3.1. Nonlinear evolution equation

The solution of the problem is obtained by expanding the variables in power series
in ε, namely

u = u0 +εu1 + . . . , w = w0 +εw1 + . . . , p = p0 +εp1 + . . . , θ = θ0 +εθ1 + . . . . (3.1)

The film thickness h(x, t) and its derivatives are assumed to be of order of unity.
Following Benney’s approach (Benney 1966), the complicated nonlinear system (2.3)–
(2.12) can be reduced to a single nonlinear evolution equation for the film thickness.
We proceed with the asymptotic analysis by substituting expressions (3.1) into the
set (2.3)–(2.12). After equating to zero the coefficients of the same powers of ε in
each equation and boundary condition, we obtain a sequence of equations. We first
determine the velocity components as functions of the unknown film thickness. The
solutions are then substituted into the kinematic condition (2.11) and the resulting
equation describes the evolution of the interface.

At the zeroth-order approximation, the set of equations and boundary equations is

u0
zz = −R, p0

z = −R cot β, u0
x + w0

z = 0, θ0
zz = 0, (3.2)

z = 0 : u0 = w0 = 0, θ0 = x, (3.3)

z = h(x, t) : u0
z = −Mn

(
θ0
x + hxθ

0
z

)
, p0 = −Shxx, θ0

z = 0. (3.4)

The solution of this system is

u0 = −Rz
2

2
+ (Rh−Mn)z, w0 = −Rhx z

2

2
, (3.5)

p0 = R cot β(h− z)− Shxx, (3.6)

θ0 = x. (3.7)

Note that the thermocapillarity influences the longitudinal velocity even at the zeroth-
order approximation. The surface velocity, expressed by

uS = R
h2

2
−Mnh, (3.8)

differs from that for isothermal films, becoming smaller with increasing tempera-
ture (Mn > 0) and respectively larger with decreasing temperature along the plate
(Mn < 0).
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At the first-order approximation,

u1
zz = p0

x + u0
t + u0u0

x + w0u0
z , (3.9)

w1 = −
z∫

0

u1
xdy, p1

z = w0
zz = −Rhx, (3.10)

θ1
zz = P u0, (3.11)

z = 0 : u1 = w1 = 0, θ1 = 0, (3.12)

z = h(x, t) : u1
z = −Mn(θ1

x + hxθ
1
z ), p1 = −2(u0

x + hxu
0
z), θ1

z = 0. (3.13)

After integration, the functions θ1, u1 and w1 are expressed in analytical form (not
presented here). Substituting u0, u1, w0 and w1 into (2.11), one obtains the equation
for the thickness h in the case of two-dimensional nonlinear waves, namely

ht + (Rh−Mn)hhx + ε
[

1
3
h3(Shxxx − R cot β hx) + 2

15
Rh5hx(Rh−Mn)

]
x

+ ε
[

1
2
PMnh4hx

(
5
6
Rh−Mn

)]
x

+ O(ε2) = 0. (3.14)

This equation is similar to that derived by Joo et al. (1991) for uniformly heated
inclined plate (without evaporation), but contains additional terms, due to the non-
uniformity of the plate temperature.

In what follows the evolution equation (3.14) will be solved by applying both a
linear and a weakly nonlinear stability analysis.

3.2. Linear analysis

The basic state is represented by (3.5)–(3.7) with h = 1. For a parallel shear flow,
equation (3.14) admits normal-mode solutions of the form

h(x, t) = 1 + δ0 exp(ikx− ω0t), (3.15)

where the amplitude δ0 � 1, k is the scaled streamwise wavenumber, and ω0 =
ωR + iωI is the frequency. For temporal stability analysis, k is real and ω0 is a
complex number. By substituting the above expression into (3.14) and linearizing
with respect to δ0, the linear growth rate of the perturbation is obtained. When the
thermocapillary force is comparable with the viscous and gravity forces, the linearized
phase speed is given by

c0 =
ωI

k
= R −Mn (3.16)

and the growth rate by

ωR = εk2
[

2
15
R2 − 1

3
R cot β − 1

3
k2S + 5

12

(
P − 8

25

)
RMn− 1

2
PMn2

]
. (3.17)

Thermocapillarity influences both physical parameters. The phase speed decreases
(increases) when the plate temperature increases (decreases) in the downstream direc-
tion. This result differs from Joo et al. (1991) stating that in uniformly heated layers
the linearized phase speed remains unaffected by the thermocapillary force.

The condition for linear instability of a uniform film is ωR > 0. The first term in
(30) expresses the destabilizing effect of the mean flow while the second and third ones
exhibit stabilizing effects of the hydrostatic pressure and mean surface tension. For
liquids with P > 1 considered here, the sign of the fourth term in (3.17) coincides with
that of the Marangoni number. Therefore, thermocapillarity is stabilizing when the
plate temperature is decreased (Mn < 0) and destabilizing for temperature increasing
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Figure 2. Marginal stability Reynolds number as function of Mn for β = π/4, S = 0 and values of
the Prandtl number: P = 1 (dashed line) and P = 10 (solid line).

in the downstream direction (Mn > 0). The sign of the fifth term in (3.17) is negative
whatever the sign of Mn, so that it has always a stabilizing effect that might be less
important than the effect of the fourth term.

The influence of gravity and thermocapillarity on the film instability is shown
in figure 2, displaying the critical Reynolds number versus Mn for S = 0 for two
values of the Prandtl number (a dashed line for P = 1 and a solid one for P = 10).
For inclined layers (β 6= π/2 and R 6= 0), there exists a stable region below each
curve, due to the hydrostatic pressure and thermocapillarity. The Marangoni number,
for which the critical Reynolds number is the smallest, depends strongly upon the
Prandtl number P . Also, the influence of P on the two-dimensional stability threshold
is related to the sign of the temperature gradient: when Mn is negative, Rc increases
with P while for positive values of Mn it decreases with increasing P .

In summary, the linear decrease in plate temperature is always a stabilizing factor
for infinitesimal perturbations. Increasing the plate temperature has a destabilizing
effect at some Prandtl numbers. But, for relatively large Prandtl numbers, large
temperature gradients can stabilize the flow. A similar non-monotonic influence of
the heating along the rigid wall on the film instability was found by López, Bankoff
& Miksis (1996) for a non-isothermal film moving down an inclined plate in the
presence of contact line.

When the capillary force at the free surface is taken into account, there exists a
cut-off wavenumber, kc, for which the linear growth rate vanishes. The growth rate
has a maximum for km = kc/

√
2. In figure 3, the cut-off wavenumber is plotted against

the Reynolds number for β = π/4, S = 0.3 and P = 10. The bifurcation points Rc,
the upper neutral curve k = kc and the lower neutral curve k = 0 are represented for
several values of Mn. The flow is linearly unstable when R > Rc and 0 < k < kc. It
is seen that the neutral curves move from left to right as Mn varies from positive
to negative values. Moreover, for a given R, the cut-off wavenumber decreases with
the Marangoni number. Calculations for different values of the surface parameter
show that the increase of S leads to an extension of the band of stable wavenumbers.
In short, the linear stability analysis shows that an increase in plate temperature
destabilizes the film while a temperature decrease has a stabilizing effect compared to
a uniformly heated film.
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Figure 3. Marginal stability wavenumber as function of the Reynolds number for β = π/4,
P = 10, S = 0.3 and different values of the Marangoni number.

3.3. Nonlinear analysis

In this subsection, we will study the evolution of finite-amplitude perturbations to
better understand the mechanism responsible for the transfer of energy from the basic
state to the disturbance. The initial disturbance is taken to be a monochromatic wave
with small amplitude

h(x, 0) = 1− δ1 cos (kx). (3.18)

The amplitude δ1 will be taken constant and equal to 0.1, as Joo & Davis (1992)
demonstrated that the final state of the disturbance is not sensitive to it. At the
initial time, the waves differ by their wavenumbers. The time evolution of the waves
is obtained by solving equation (3.14) by means of the finite difference method.
The equation is written in a conservative form and integrated in a periodic domain.
A second-order-accurate Crank–Nicholson scheme is used in time and a modified
second-order upwind difference method is employed to handle the nonlinear terms.
The method possesses both conservative and transport properties and maintains
approximately the second-order accuracy of centred-space derivatives. The nonlinear
difference equations are solved by Newton–Ralphson iteration.

The initial value problem is solved in the interval [−π/k, π/k]. The mesh spacing,
∆x = 10−3, and the time step, varying from 5× 10−5 to 5× 10−4, are small enough to
obtain a solution with satisfactory accuracy. The accuracy is controlled by checking
the averaged thickness

h̄ =
k

2π

π/k∫
−π/k

h(x, t) dx,

which is constant in time, as follows directly from (3.14). For the initial profile
(3.18), h̄ = 1. If ∆x and ∆t are chosen too large, the numerical value of h̄ drifts
monotonically away from 1 as time elapses. Smaller time steps than the maximum one,
∆t = 5× 10−4, are selected when the wave amplitude begins to grow explosively. We
choose physically reasonable values of the non-dimensional parameters. To compare
our numerical results with those obtained by Joo et al. (1991), we take ε = 0.2 and
S = 0.3.
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4. Results
4.1. Isothermal layers

The numerical method is first implemented for isothermal films. We confirm the results
of the nonlinear theory reported in previous studies (e.g. Joo et al. 1991), extending
them to larger values of the mean surface parameter and smaller wavenumbers.

The weakly nonlinear analysis predicts that the evolution of the two-dimensional
waves depends strongly on the initial wavenumber (Gjevik 1970; Lin 1974; Chang
1989). This conclusion is also confirmed by numerical simulations based on the
Benney-type long-wave approximations (Joo et al. 1991). Let us summarize the main
results of the linear and weakly nonlinear theory for isothermal films.

(i) For k > kc, the initial perturbation of the flat film surface is damped and the
wave damping process becomes slower as k → kc. At large times, the solution tends
to the basic state, h = 1.

(ii) The weakly nonlinear analysis predicts the occurrence of another wavenumber
ks(R, β, S), which separates the regimes of supercritical (ks < k < kc) and subcritical
(k < ks) domains. In the regime of supercritical bifurcations, the initial perturbation
grows and changes its shape. After some time the flow equilibrates, but the conver-
gence towards the equilibrium state is not monotonic. For a wavenumber k close
to kc, the solution may evolve into a stable, almost sinusoidal wave of small finite
amplitude. For k close to km, the surface wave approaches the form of a ‘solitary’ (or
single) wave, as observed in experiments. Gjevik (1970) found that ks = kc/2, and the
theoretical approaches of Lin (1969, 1974) and Chang (1989) predict similar results.
However, in their numerical calculations Joo et al. (1991) did not reach equilibration
at k = kc/2, but demonstrated that the value of ks would necessarily be larger than
kc/2. Pumir et al. (1983) noted that several kinds of degenerate solitary waves may
exist.

(iii) When k < ks, a strong nonlinearity promotes further change in the initial
disturbance and saturation does not occur. However, the weakly nonlinear analysis
cannot predict properly the wave evolution in the regime of subcritical instability.
Some previous attempts to solve the long-wave evolution equation for k much smaller
than kc have also failed, due to numerical breakdown (Pumir et al. 1983 and Joo et
al. 1991).

In the present paper, we study the nonlinear long-wave instability in isothermal
films (Mn = 0) for initial wavenumbers smaller than the cut-off one. For Reynolds
number R = 3.53 and β = π/4, the linear theory predicts Rc = 2.5, kc = 2.21 and
km = 1.56. In figures 4 and 5, some stability results are presented for the wavenumbers
k = 1.3 and 0.7, respectively. In figure 4(a,b), free-surface configurations are shown
by lines representing a time increment of 0.05. For small times, the wave amplitude
first grows, in accordance with the linear theory, but soon reaches a maximum and
then decays slowly. It is seen from figure 4(c) that a finite-amplitude permanent wave
emerges after about 20 nondimensional time units and travels downstream with a
fixed wave speed. In the same figure, the final permanent waveform predicted by Joo
et al. (1991) is represented by a dashed line. There is a good agreement between our
results and these obtained by different numerical methods, even though the permanent
waves occur at different periods of time.

Figure 5 shows the surface-wave instability for k = 0.7, which is less than one-third
of kc. It is found that the growth rate is much more important and the distortion
of the free surface is more significant for smaller initial wavenumbers. The initial
sinusoidal shape is distorted, so that the wave front steepens and its rear is stretched
(figure 5a). The wave amplitude decays after reaching a maximum and the wave
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Figure 4. Evolution of the free-surface shape of an isothermal layer at various instants of time for
R = 3.53 and k = 1.3 (km = 1.56): (a) from t = 0 to t = 1.15 in steps of 0.05; (b) from t = 4.4 to
t = 4.8 in steps of 0.05; (c) final permanent waveforms for 20.75 6 t 6 20.85 with time increment of
0.05. The permanent wave calculated by Joo et al. (1991) for t = 29.85 is represented by the dashed
line.
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Figure 5. Evolution of the free-surface shape of an isothermal layer at various instants of time for
R = 3.53 and k = 0.7. (a) from t = 2.4 to t = 3.5 in steps of 0.05; (b) film profiles: - - -, t = 8.6;
−−, t = 11.2; —, t = 16.3; (c) final permanent waveforms at t = 31.8 and t = 31.9.

rear becomes longer and longer with the appearance of dimples. The large-amplitude
wave is then followed by a small-amplitude capillary wave.

Pumir et al. (1983), Joo et al. (1991), and Joo & Davis (1992) reported an explosive
wave growth occurring at rather small initial wavenumbers. For a finite period of
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time the perturbations will grow, reaching a large amplitude, then start to evolve
quickly but after some time the numerical calculations break down. For k = 0.7
(i.e. k < kc/2), our numerical procedure allows us to follow the solution over long
periods of time and to observe new features. Over such times, the large-amplitude
wave travels faster and disperses into capillary ripples of almost the same amplitudes,
as seen in figure 5(b). There is a coalescence between the small-amplitude waves. The
wave interaction continues for a long time, until only one ‘solitary’ wave is emerging
(figure 5c). So, it appears that for quite small wavenumbers the preferred surface shape
is a ‘solitary’ wave and such a behaviour is confirmed by experiments (Liu et al. 1993,
1995). A qualitative comparison of our results with the full-scale computations by
Ramaswamy et al. (1996) indicates the capability of the long-wave approximation
theory to predict the behaviour of the film thickness in the range of parameters for
which it is developed. However, for relatively large values of the Reynolds number,
the long-wave evolution equation does not give correct results as the large-amplitude
disturbances require considering higher-order terms in the asymptotic presentation of
the film thickness.

4.2. Effect of thermocapillarity

We examine now the evolution of a falling film on a plate with a temperature field
decreasing or increasing linearly along the surface. It is well known that the long
waves originate from the deformation of the free surface, due to the gravity and
mean surface tension. The change of the film thickness and the imposed temperature
gradient along the plate cause variations in the film surface temperature. Due to
thermocapillarity, the liquid moves from warm depressed regions (troughs) of the film
to the neighbouring cooled elevated regions (crests). The hydrostatic pressure tends to
flatten the interface and therefore stabilizes the surface perturbations. The instability
of thin falling films being convective, the disturbances are transported downstream
by the mean flow.

In this work, we consider an adiabatic free surface. This assumption is reasonable
because the growing initial waves cause variations in the surface temperature, even
in the case of a constant plate temperature. As shown below, the thermocapillary
mechanism of instability is more significant for a linear distribution of the plate
temperature than for a constant temperature. When studying the thermocapillary
effect on the surface wave instability, two questions need to be answered: How is the
nonlinear evolution of periodic waves affected by the linear distribution of the plate
temperature? What kinds of permanent wave shapes are formed?

To answer these questions, the evolution equation (3.14) will be solved in two
different ways. First, the solution will be found analytically, using the weakly nonlinear
theory. Second, for strong nonlinear regime, the equation will be solved numerically
in a periodic domain, using the finite-difference code described in § 3.3. It is natural
to assume that the fluid domain is not restricted by periodicity and that the surface
waves evolve both spatially and temporally, allowing complex wave interactions.
However, from the mathematical point of view, it is not obvious how to formulate
the boundary conditions on the free surface when leaving the domain under study.
It is also unclear whether the limitation of the computational domain to a finite
length may lead to artificially high critical values of R and Mn. Therefore we impose
periodic boundary conditions, which simplifies greatly the numerical calculations and
leads to physically reasonable results.

Applying the weakly nonlinear analysis to non-isothermal films, we prove the
existence of the supercritical stability region, kc > k > ks = kc/2, for relatively large
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Figure 6. Nonlinear phase speed versus k for R = 3.53, β = π/4, P = 10, S = 3 and different
values of Mn from −0.02 to 0.02 in steps of 0.01.

values of the mean surface parameter (when S > 1), as Gjevik (1970) reported
previously for isothermal films. In this region, equilibration of the waves occurs as a
result of saturation of dominant Fourier series terms. However, as k becomes closer
to ks, higher harmonics than those taken into account in the weakly nonlinear theory
become important and the equilibration, if it exists, cannot be described by taking
into account only the fundamental mode and a few subharmonics.

In figure 6, the wave speed c is plotted versus the wavenumber for R = 3.53,
β = π/4, P = 10, S = 3 and different values of the Marangoni number. The
nonlinear phase speed is always larger than the linearized one (see (3.16)). It increases
with Mn at a given wavenumber. When k is decreased from the cut-off wavenumber,
the wave speed increases and passes through a maximum. The rate of increase of c is
smaller for negative Mn than for positive Mn. The wavenumber at which the speed
has maximum is influenced by thermocapillarity and increases with the Marangoni
number. The calculations show that the wave amplitude grows as Mn is increased.

The nonlinear evolution of the film is studied by solving equation (3.14) numerically.
In this paper, numerical results are obtained for the inclination angle β = π/4, the
Prandtl number P = 10 and the surface parameter S = 0.3.

4.2.1. Linear decrease in plate temperature

Consider first the case of a linear decrease in plate temperature in the downstream
direction. Typical results of the numerical solution for negative Marangoni numbers
are shown in figures 7 and 8. They display permanent waveforms for R = 3.53 and
different initial wavenumbers. In figure 7, free-surface configurations are presented
for k = 1.3 and two values of the Marangoni number: Mn = −0.01 (solid lines) and
Mn = −0.02 (dashed line). For these values of Mn the film flow is linearly unstable
as kc is equal to 1.83 (km = 1.3) and 1.43 (km = 1). Up to moderate times (t = 5.6) the
nonlinear wave evolution is similar to the isothermal case (compare with figure 4b),
but the subsequent monotonic decay of the wave amplitude differs from that case.
Due to thermocapillarity, the amplitude growth stops earlier than in the isothermal
case and, for example, the permanent wave amplitude at t = 13.8 is lower than that
for t = 20.85 in figure 4(c). For Mn = −0.02, the perturbation damps slowly and the
free surface tends to the basic flat film.

Figure 8 displays permanent waves for k = ks(Mn). Note that ks = 1.1 in the
isothermal case (solid line) and ks = 0.7 at Mn = −0.02 (dashed line). For Mn = 0,
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Figure 7. Free-surface configurations for a linear decrease in plate temperature for R = 3.53, k = 1.3
and two Marangoni numbers at different times: - - - , Mn = −0.02 at t = 32.6; —, Mn = −0.01 at
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Figure 8. Final permanent waveforms for R = 3.53, k = ks(Mn) and two values of the Marangoni
number: Mn = 0 (solid line) and Mn = −0.02 (dashed line).

the resultant wave grows initially in amplitude and travels downstream leaving behind
it a nearly undeformed interface. This behaviour is similar to that shown in figure 5(a).
Since the imposed wavenumber is half of the cut-off value, the most likely surface
shape is expected to be a ‘solitary’ wave, and this is what is obtained. For Mn =
−0.02, the disturbance amplitude grows slightly from its initial value and afterwards
monotonically decays towards an equilibration form. A comparison between the
permanent waves in figure 8 indicates that the decrease in plate temperature has a
strong stabilizing effect on the film by restricting the growth of the wave amplitude.
For Mn = −0.02 the finite-amplitude permanent wave travels downstream with a
fixed speed smaller than the wave speed at Mn = 0.

The physical mechanism for the stabilizing effect of thermocapillarity when Mn < 0
can be explained in the following way. When the plate is cooled in the downstream
direction (see the scheme in figure 9a) the surface temperature at the trough (point
L) ahead of the moving wave front is lower than that at the crest (point M) and
the thermocapillary force acting in the same direction tends to flatten the film. The
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Figure 9. Scheme of the action of the thermocapillary force F t: (a) case of linear decrease in plate
temperature, (b) case of linear increase in plate temperature.

depressed region behind the wave front (point N) is warmer than the elevated one
(point M), but the calculations show that the tangential temperature gradients in
the wave trailing region are quite small. Brauner & Maron (1982) studying the
development of waves and their influence on mass transfer in a fluid layer flowing
down an inclined plate, found that the major increase in the mass transfer rate
occurs in the wave front region, while a decay in the transfer rate takes place in the
trailing region. This observation seems to be a good but indirect confirmation of the
present prediction about weak tangential temperature gradients in the trailing region.
In summary, when the plate temperature is decreased in the downstream direction,
thermocapillarity has a strong stabilizing effect on the surface wave evolution.

4.2.2. Linear increase in plate temperature

Suppose now that the temperature is increased linearly along the plate. In this
case (see figure 9b), the thermocapillary force will draw the liquid from a hot trough
(point L) to a cold crest (point M) in the direction opposite to gravity. The crest
is then moving faster than the trough and the wave becomes steeper behind the
trough. Therefore, when the depressed wave region tends to flatten and the crest to
elevate, the tangential temperature gradient ahead of the wave front becomes larger
and larger and the disturbance is amplified. The temperature differences in the wave
trailing region (from M to N) are again small and the thermocapillary force acting
along that portion of the surface is much weaker and does not influence significantly
the film shape. Therefore, the destabilizing effect of the thermocapillary force acting
ahead of the wave front will be dominant, as we will see below.

We start the calculations with the values of the Reynolds and Marangoni numbers
and wavenumbers obtained from the linear stability analysis shown in figure 3. For
such points as, for example, Mn = 0.01, k = 1.5 and R = 1.7 (Rc = 2.8), the initial
perturbation damps quickly towards the basic state, as expected.

The evolution of the film thickness for values of R, Ma and k outside the stability
region is displayed in figures 10–12. Free-surface configurations are shown in figure 10
for R = 3.53, Mn = 0.02 and k = 1.3. For these values of the Marangoni and Reynolds
numbers it is found that Rc = 1.9, kc = 2.8 and km = 1.97. At the initial stage, the
amplitude of the disturbance grows quickly and the phase velocity in the crest becomes
higher than in the trough. The wave deforms, having an asymmetric shape with a
steep front (figure 10a). Due to thermocapillarity, the growth of the disturbance is
amplified (figure 10b) and no equilibration is achieved, at least within the range of
validity of equation (3.14). In the case of a non-adiabatic (evaporative) interface, a
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Figure 10. Free-surface configurations in the case of a linear increase in plate temperature for
R = 3.53, k = 1.3 and Mn = 0.02 at various instants of time: (a) from t = 0 to t = 1.1 in steps of
0.05; (b) from t = 2.5 to t = 3 in steps of 0.05.

similar behaviour is predicted by Joo et al. (1991). Their surface configurations are
similar to a monochromatic wave, but nevertheless an unbounded growth in the wave
amplitude is found.

Figure 11(a) shows the film shapes for a smaller Reynolds number R = 2.8 and the
same values of the other parameters as in figure 10. In this case the linear stability
theory predicts kc = 1.83 and km = 1.3. The values of the Reynolds number and the
initial wavenumber corresponds to the point (2.8, 1.3) in figure 3, situated between
the neutral curves Mn = 0 and Mn = 0.02, which means that while the relative
isothermal film is linearly stable, the non-isothermal one is unstable. At the initial
stage, the resultant wave grows in amplitude and travels downstream followed by
a capillary ripple (similar shapes are displayed in figure 4b). It turns out that the
disturbance tends toward a permanent wave, shown in figure 11(a). So, for k being
equal to the wavenumber km corresponding to the maximum amplitude growth, an
almost sinusoidal wave is observed at large times. This is a consequence of the balance
between the gravity and thermocapillary forces.

When for the same flow rate thermocapillarity is increased, the permanent waves
take another form, presented in figure 11(b) for Mn = 0.04 (Rc = 1.34, kc = 2.35
and km = 1.67). In this case, the thermocapillary force overcomes the stabilizing
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Figure 11. Free-surface configurations in the case of a linear increase in plate temperature for
R = 2.8, k = 1.3 and: (a) Mn = 0.02 at t = 17 and t = 27 (final permanent waveform); (b)
Mn = 0.04 at t = 6.7, t = 9.7 and t = 12.7.

effects of the hydrostatic pressure and mean surface tension. A significant steepening
of the wave and a secondary wave structure are formed at the initial stage. Note
that for R = 2.8 and k = 1.3 the growth rate of the corresponding isothermal
layer monotonically decays until the surface is flattened. As seen in figure 11(b),
thermocapillarity contributes little to the thinning of the film, so that dry spots will
never be observed. As soon as a ‘solitary’ wave appears, the wave shape does not
change significantly, but its amplitude varies until nonlinear saturation is attained.

In figure 12, the imposed wavenumber is decreased to k = 0.9(≈ kc/2), while R and
Ma keep the same values as in figure 11(a) . Figure 12(a) shows how the initial finite-
amplitude wave is dispersed into two waves of smaller amplitudes. In figure 12(b) are
plotted three permanent wave shapes at different times. After nonlinear saturation,
the only wave that could be recognized is of solitary type. Thus, by taking for R
and k values above the neutral curve for Mn = 0 or slightly below it (see figure 3)
and by imposing a weak non-uniform heating of the plate, the solution of the
evolution equation (3.14) predicts nonlinear saturation, resulting in the formation of
a finite-amplitude permanent wave.

The nonlinear interactions in non-uniformly heated falling films exhibit a tendency
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Figure 12. Free-surface configurations in the case of a linear increase in plate temperature for
R = 2.8, k = 0.9 ≈ kc/2 and Mn = 0.02 at various instants of time: (a) from t = 13.4 to t = 18.6 in
steps of 2.6; (b) final permanent waveforms for 34.1 6 t 6 34.3 in steps of 0.1.

towards permanent two-dimensional waves for weak heating (at relatively small
Marangoni number). When the Marangoni number is increased, nonlinear saturation
has not been found because the thermocapillary force overcomes the stabilizing effects
of the hydrostatic pressure and the mean surface tension and the film is destroyed.

5. Conclusions
The influence of a non-uniform heating of an inclined plate on the stability of a thin

liquid film falling down it is investigated. A linear distribution of the plate temperature
is assumed, so that a constant temperature gradient is acting. Both decreasing and
increasing the plate temperature in the downstream direction are considered. The free
surface is assumed adiabatic. The plate heating affects the film instability through the
thermocapillary force acting along the free surface.

The goal of the present study is to quantify the effect of thermocapillarity on
the non-linear instability of the falling film. For two-dimensional disturbances a
long-wavelength evolution equation of the Benney-type is derived. It describes finite-
amplitude instabilities due to viscosity, gravity, mean surface tension and thermocap-
illarity. The corresponding evolution equation differs from that obtained by Joo et
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al. (1991) for a uniformly heated layer with a non-adiabatic free surface because of
the presence of the thermocapillary effect. The Marangoni number defined by the
longitudinal temperature gradient is positive (negative) when the plate temperature is
increased (decreased) in the downstream direction.

The linear stability analysis of the equation yields the critical values of the Reynolds
number and the dimensionless linearized phase speed for different values of the
Marangoni number. The critical Reynolds number grows linearly with the abso-
lute value of the Marangoni number if the plate temperature is decreased in the
downstream direction (Mn < 0). In this case, the linear stability threshold increases
with the Prandtl number. Increasing the plate temperature leads to a decrease of
the critical Reynolds number. The reduction is important for large Prandtl numbers.
So, decreasing the plate temperature in the downstream direction has a considerable
stabilizing effect while the temperature increase plays a destabilizing role. The phase
speed depends also on the direction of the heating. Being equal to the Reynolds
number for isothermal films, it becomes larger (smaller) as the plate temperature is
decreased (increased) in the flow direction.

The nonlinear stability analysis based on the numerical solution of the evolution
equation confirms the results reported by Joo et al. (1991) for an isothermal film. We
confirm, in particular, that finite-amplitude waves are stable solutions of the equation
for initial wavenumbers smaller than the cut-off wavenumber. The permanent waves
are nearly sinusoidal for initial wavenumbers close to the cut-off wavenumber and are
of solitary type for much smaller values. It can be stated that the numerical results
for the isothermal problem are in good agreement with calculations performed by
other authors and experiments on thin-film flows.

A weakly nonlinear analysis is also performed to find a transition point ks that
separates the supercritical (k > ks) from the subcritical (k < ks) bifurcation. In the
supercritical region, waves develop into permanent ones when they move downstream.
But, their behaviour for k close to ks cannot be adequately predicted by the weakly
nonlinear theory. Numerical simulations are needed to determine the evolution of the
permanent waves from the neutral stability curve when the wavenumber is decreased.

The general behaviour of non-uniformly heated films is similar to that of isothermal
films, but the amplitude of the permanent waves is influenced by thermocapillarity.
Depending on the direction of the imposed temperature gradient, the thermocapillary
effect can be either stabilizing or destabilizing. If the plate temperature is decreased
in the downstream direction, the thermocapillary force acts in the same direction and
tends to flatten the free surface. As a consequence, the otherwise diverging disturbance
in the isothermal film, converges either to the basic state of the flat surface or to a
small-amplitude permanent wave.

When the plate temperature is increased in the downstream direction, the thermo-
capillary force acts in the opposite direction and thus promotes the growth rate of
the wave amplitude with respect to the isothermal case. The shape of the permanent
wave depends mainly on the flow rate measured by the Reynolds number, while its
amplitude is influenced by thermocapillarity. A rapid amplitude growth is found for
relatively large positive values of the Marangoni number, at least within the range of
validity of the evolution equation derived in this work.

In summary, thermocapillarity influences the film shape but does not cause a
significant local thinning of the film, leading to rupture. A supercritical bifurcation is
predicted and it is shown that the preferred long-wave modes are of solitary type.

Obviously, non-isothermal film flows are mostly three-dimensional and such films
need to be considered too. This will be the subject of a subsequent study. Here
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we present briefly the results of the linear stability analysis for three-dimensional
disturbances. The corresponding evolution equation takes the following form:

ht + (Rh−Mn)hhx + ε
[

2
15
Rh5hx(Rh−Mn)

]
x

+ ε∇ · {[ 1
2
PMnh4

(
5
6
Rh−Mn

)− 1
3
R cot βh3

]∇h}
+ ε 1

3
S∇ · [h3∇∇2h] + O(ε2) = 0 . (5.1)

Here ∇ is a two-dimensional gradient operator (∂x, ∂y), where y is the spanwise
coordinate scaled by the characteristic length l. Imposing an infinitesimal harmonic
disturbance with a wavenumber vector k = (k cosϕ, k sinϕ) in the (x, y)-plane, it is
easy to calculate the linear growth rate

ωR = εk2
[

2
15
R(R −Mn) cos2 ϕ− 1

3
R cot β − 1

3
k2S + 5

12
RMnP − 1

2
PMn2

]
, (5.2)

where ϕ is the angle between the plane in which the oblique wave propagates and
the (x, z)-plane. In figure 13 the critical Reynolds number is plotted against the
Marangoni number for three different oblique waves and the two-dimensional wave
(ϕ = 0) presented in figure 2 (dashed lines for P = 1 and solid ones for P = 10).
The linear stability analysis of isothermal as well as uniformly heated layers predicts
that the two-dimensional waves are the most dangerous instability modes. According
to the results of figure 13, this conclusion also holds for non-uniformly heated films
with negative values of Mn when the plate temperature is decreased. For positive
Mn, it remains true for P = 1, but not for P = 10, as there is no preferred two- or
three-dimensional wave. The critical Marangoni number Mnc, above which the initial
instability will not be only two-dimensional, thus depends strongly on the Prandtl
number. For P = 10, we find Mnc ≈ 0.1. A similar dependence of the preferred initial
disturbance with respect to the Prandtl number was also noticed by Smith & Davis
(1983) who studied the instability of non-uniformly heated horizontal layers.

In the present study, the Marangoni number is taken to be less than Mnc and
for this reason, the nonlinear two-dimensional analysis holds for the range of the
non-dimensional parameters considered herein.
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